
Manual

HTPheno

A Novel Image Analysis Pipeline for

High-Throughput Plant Phenotyping

July 14, 2010

Contents

1 Basic step-by-step setup 1

1.1 Define the image object classes 2

1.2 Define the regions . 5

1.3 Define the internal mapping 8

1.4 Define the output colour mapping 8

1.5 Define the scaling . 10

2 Using HTPcalib 11

3 Using HTPheno 14

A Details: workflow modules of HTPheno 16

B Details: The current workflow in HTP.java 18

B.1 Obtaining the image . 18

B.2 Loading the configuration files 18

B.3 Colour range classification . 19

B.4 Single pixel removal . 19

B.5 Remove non connected clusters of green pixel 19

B.6 Fill single pixel holes . 19

B.7 Apply region fill . 19

B.8 Classify according to colour similarity 19

B.9 Apply region fill again . 20

B.10 Conduct image property calculations 20

B.11 Create the final image stack 20

i

Chapter 1

Basic step-by-step setup

To enable a versatile applicability of HTPheno to different high-throughput

phenotyping setups, we decided to follow a modular approach: several con-

figuration files allow to adjust the plugin to the user’s needs. All config-

uration files are located in the same directory as the HTPheno-plugin

(ImageJ/plugins/HTPheno/).

Before going into the details of the configuration files, have a look at the

simplified processing workflow:

1. a pixel with colour values ⇒ is classified into a class c

2. a class c ⇒ is represented by a natural number n

3. a number n ⇒ is mapped to a colour in the classified image

One advantage of this scheme is that different classes, e.g. for dark and light

plant parts, can be mapped to the same output colour.

Please read the following step-by-step guide thoroughly to set up all the

needed configuration files for the side view images and the top view images,

respectively (see also tutorial Setup; http://htpheno.ipk-gatersleben.de/tutorials/setup.htm).

1

1.1 Define the image object classes

At first decide which classes of objects the image contains (in side view

images and top view images, respectively).

Figure 1.1: Example images side view image (left) and top view image (right).

Insert the object classes into the configuration files for example with ImageJ

(see tutorial Setup; http://htpheno.ipk-gatersleben.de/tutorials/setup.htm).

For the following example configuration consider these classes (names arbi-

trarily chosen):

• side view image: plant-light, plant-dark, cages, sticks, carrier, back-

ground;

• top view image: plant-light, plant-dark, cages, sticks, soil, background,

conveyor belt, carrier;

2

The configuration files would look as follows (define one class per line):

1 plant -light

2 plant -dark

3 cages

4 sticks

5 carrier

6 background

Listing 1.1: ”config color2class side.csv”

1 plant -light

2 plant -dark

3 cages

4 sticks

5 carrier

6 soil

7 background

8 conveyor belt

9 carrier

Listing 1.2: ”config color2class top.csv”

At this stage no colour ranges for theses classes are necessary. They will be

created later with the help of the HTPcalib function (see Section 2) for

side view images and top view images, respectively.

With added colour ranges

After calibrating the classes with HTPcalib the first file would for example

look like this:

1 plant -light ,71 ,152 ,88 ,164 ,49 ,122 ,34 ,76 ,45 ,151 ,88 ,164

2 plant -dark ,27 ,95 ,35 ,106 ,20 ,79 ,39 ,76 ,54 ,156 ,35 ,106

3 cages ,119 ,189 ,122 ,186 ,128 ,193 ,0 ,251 ,0 ,38 ,128 ,193

4 sticks ,27 ,145 ,53 ,180 ,102 ,255 ,151 ,172 ,81 ,206 ,102 ,255

5 background ,255 ,255 ,255 ,255 ,255 ,255 ,0 ,0 ,0 ,0 ,255 ,255

Listing 1.3: ”config color2class side.csv with colour ranges”

3

Parameters in detail

The order of the parameters is as follows:

1. class name

RGB colour values:

2. red-channel mininum, red-channel maximum

3. green-channel mininum, green-channel maximum

4. blue-channel mininum, blue-channel maximum

HSV colour values:

5. hue mininum, hue maximum

6. saturation mininum, saturation maximum

7. value mininum, value maximum

For a pixel to be classified as class plant-light it has to comply to the following

conditions for its RGB and HSV colour values:

71 ≤ R ≤ 152 88 ≤ G ≤ 164 49 ≤ B ≤ 122

34 ≤ H ≤ 76 45 ≤ S ≤ 151 88 ≤ V ≤ 164

Notice: As dealing with 8bit images here, each value ranges between 0 and

255. The HSV values are normalised.

Notice: Instead of defining plant-light and plant-dark as separate classes,

it is possible to define only one class plant. While performing HTPcalib

the user has the alternative to define several sets of different colour ranges

to the class plant (see tutorial HTPcalib; http://htpheno.ipk-gatersleben.de-

/tutorials/HTPcalib.htm). Please remember to adjust the other configura-

tion files accordingly.

4

1.2 Define the regions

To segment the images into regions where objects can be expected, define

regions in the config regions side.csv and config regions top.csv files, respec-

tively.

A region is specified by its dimensions and by the objects that are expected

to be found in. It is also possible to choose between a rectangular and an

oval shape of the region, and to specify a colour for its outline as hexadecimal

RGB-colour value. A tool to choose colours from a colour pallet, displaying

the appropriate hexadecimal colour code is for example the online tool ”The

HTML Color Wheel Coordinator” (see http://www.html-color.net/).

An example configuration file for a top view image:

1 background -region ,R,0,1233 ,0 ,1623, FFFFFF ,background

2 plant -region ,R,0,1233 ,0 ,1623, FFFFFF ,plant -light ,plant -dark

3 carrier -region ,R,450 ,790 ,635 ,973 , ff8040 ,carrier

4 beltLT -region ,R,0 ,455 ,675 ,744 ,00ffff ,conveyorbelt

5 beltLB -region ,R,0 ,455 ,862 ,928 ,00ffff ,conveyorbelt

6 beltRT -region ,R,785 ,1233 ,679 ,744 ,00ffff ,conveyorbelt

7 beltRB -region ,R,785 ,1233 ,866 ,932 ,00ffff ,conveyorbelt

8 soil -region ,O,480 ,757 ,670 ,932 , ff0000 ,soil

9 sticks -region ,R,352 ,896 ,544 ,1054 ,000000 , sticks

10 cages -region ,R,400 ,840 ,580 ,1020 , ff00ff ,cages

Listing 1.4: ”config regions top.csv”

Parameters in detail

The order of the parameters for a region entry is as follows:

• the region name (arbitrarily chosen)

• the type of the region (”R”ectangular or ”O”val)

• x-start, x-end

• y-start, y-end

• the colour of the regions outline

5

• a list of allowed objects in that region (named exactly as in con-

fig color2class *.csv files)

The central-region is of type ”R”ectangular and contains all pixel that lie

within the rectangle specified by 450 to 780 x-coordinates and 850 to 1580

y-coordinates in the side view image. Dimensions can be measured di-

rectly with ImageJ (see tutorial Setup; http://htpheno.ipk-gatersleben.de/-

tutorials/setup.htm). Pixel of the object classes sticks or cages are only

classified within that rectangle.

Notice: Regions are processed in the order of their appearance in the con-

figuration file. Use this advantageously and carefully select an appropriate

order.

Notice: These two configuration files are the only ones that are not neces-

sarily needed to conduct the classification (could be left empty). HTPheno

will then use the config color2class *.csv files as a fallback.

6

Figure 1.2: A more complex example of regions visualised.

7

1.3 Define the internal mapping

Different classes (e.g. plant-dark and plant-light) can belong to one object

(plant). Therefore define the internal mapping in the config class2number.csv

configuration file.

Within that file assign an integer number to each object which has been de-

fined in the config color2class *.csv files (see tutorial Setup; http://HTPheno.-

ipk-gatersleben.de/tutorials/setup.htm).

For our previous example the file would look like this:

1 plant -light ,1

2 plant -dark ,1

3 sticks ,2

4 cages ,3

5 background ,4

6 carrier ,5

7 conveyor belt ,6

Listing 1.5: ”config class2number.csv”

Notice: This single file contains the information for side view images and

top view images.

1.4 Define the output colour mapping

Up to now all the information required for a successful classification is col-

lected. The only information still missing is how to colourise each of the

classified image parts.

The colour mapping definition directly connects to the previous section:

For each NUMBER representing one (or more classes) in the config class2-

number.csv configuration file define a hexadecimal RGB-colour value in the

config number2color.csv configuration file.

8

1 1,00ff00

2 2,00ffff

3 3,ff00ff

4 4,ffff00

5 5,00ffff

6 6 ,000000

Listing 1.6: ”config number2color.csv”

The plant-dark and plant-light classes, corresponding to number 1, will be

green (00ff00), the conveyor belt, corresponding to number 6, will be painted

black (000000), etc.

Notice: The classification workflow is now complete: colour-to-class, class-

to-number, and number-back-to-output-colour.

9

1.5 Define the scaling

The scaling parameters are necessary to convert the measured values for

the phenotypic parameters from pixel to millimetre. Two parameters are

necessary:

• the number of pixel,

• and the corresponding number of millimetre.

To obtain these values measure an image part with ImageJ (e.g. measure

width of the plant carrier with ImageJ in pixel (256 pixel), see tutorial

Scaling; http://htpheno.ipk-gatersleben.de/tutorials/scaling.htm), and then

also measure the same part in reality in millimetre (195 mm).

If these scaling parameters are determined for side view images and top view

images, insert them into the config scaling side.csv and config scaling top.csv

configuration files, respectively.

Those two values, pixel first, then a colon, then the millimetre, form the

scaling calibration files.

1 256:195

Listing 1.7: ”config scaling side.csv”

Here the top view 332 pixel correspond to 195 millimetre:

1 332:195

Listing 1.8: ”config scaling top.csv”

After successfully finishing the setup of all the necessary configuration files,

start the HTPcalib function to calibrate the colour ranges for each class

defined in the cpnfig class2color *.csv configuration files.

10

Chapter 2

Using HTPcalib

A good colour range calibration is essential for reliable image processing

results. Therefore sufficient time should be spent on this step.

The already created very basic config color2class side.csv and config color2-

class top.csv configuration files in the ImageJ/plugins/HTPheno directory

look like the following example:

1 plant -light

2 plant -dark

3 cages

4 sticks

5 background

Listing 2.1: ”config color2class side.csv”

The function HTPcalib will now assist you in determining the colour ranges

for each class defined in the above configuration files. Here as an example

the workflow for side view image calibration is shown (see tutorial HTPcalib;

http://htpheno.ipk-gatersleben.de/tutorials/HTPcalib.htm for top view cali-

bration):

• start ImageJ

• start the HTPcalib function (Plugins → HTPheno → HTPcalib)

• select one or more side view images (if the image name contains ”side”

HTPcalib allocates the colour ranges to the configuration file con-

fig color2class side.csv)

11

• For each of the defined classes HTPcalib allows to select several pixel

of that class in the image to determine its colour range.

• After each click HTPcalib visualises the current colour range by

marking all matching pixel in green.

• Once finished with the colour range selection of a class store the results

by pressing ENTER. HTPcalib asks then to whether create another

colour range set for this class to further refine it. Otherwise HTPcalib

proceeds with the next defined class.

• It is possible to take back several steps by pressing ESC, in case you

accidentally clicked on the wrong pixel in that class or too much other

pixel are assigned.

• To see temporarily the original image (without markups) press and

hold the TAB key.

Notice: Repeat the above steps for the top view images.

12

Hints for a good calibration

• Do not cover too different image parts of the same class with only

one colour range calibration as it might then also cover other parts

that lie in between the defined colour ranges (see Fig. 2.1). In this

case add another colour range set for the class by pressing ENTER. A

better way is rather to create two classes (as already suggested, e.g.

plant-dark and plant-light) and calibrate them separately. As another

possibility define only one class plant and then create several differ-

ent colour range sets for it with HTPcalib (see tutorial HTPcalib;

http://htpheno.ipk-gatersleben.de/tutorials/HTPcalib.htm).

• When calibrating a class, try to keep the already selected image areas

contiguous before extending them further.

a) b) c)

Figure 2.1: Examples of using HTPcalib: a) A too wide colour range of dark
and light plant parts also selects cage-pixel. b) and c) With two classes, one for
light and dark plant parts, respectively, usually a more exact calibration can be
achieved.

13

Chapter 3

Using HTPheno

After completing the and the calibration, start HTPheno in the ImageJ

Plugins menu (Plugins → HTPheno → HTPheno (single file) or HTPheno

(complete directory)) and choose either the ”single file“ or the ”complete

directory“ mode. Select an image or a directory in the open dialog box.

Notice: Only PNG files that contain either ”side“ or ”top“ in their file

names can be processed.

HTPheno allows to adjust the scaling calibration in case the scaling pa-

rameters differs from the configuration files (config scaling *.csv).

Now HTPheno processes the image(s) automatically. For each selected file

HTPheno

• opens and displays the image,

• marks the regions according to the config regions *.csv definitions,

• classifies it according to the config color2class *.csv and config regions *-

.csv definitions,

• further improves the achieved classification,

• calculates and displays the image parameters,

• builts up an image stack consisting of 6 images:

1. original image,

2. regions where the objects of the image are expected to be found

in,

14

3. object segmentation by colour classification,

4. object extraction,

5. morphology which lowers the noise level by performing an open-

ing,

6. analysis results displaying the obtained phenotypic parameters of

the plants,

• shows the result parameters in a result table,

• process the next image, if applicable.

Notice: The results (image stack and result table) are stored in the same

directory as the original image(s). The results file will be named HT-

Pheno analysis results date–time.csv (e.g. HTPheno analysis results 2010-

07-07–15-41-26.csv).

15

Appendix A

Details: workflow modules of

HTPheno

The HTPheno plugin consists of several modules with defined interfaces

that provide the current functionality (see Fig. A.1).

Please look at the javadoc documentation (and the source code) to obtain

detailed information about modules and their interfaces.

16

1 INPUT

• read image from database, file, etc. ...

• provides functions: htpInputGetImage(); ...

2 CONFIGURATION

• load standard classification configuration files

• load user defined configuration files

3 PROCESSING

• pattern recognition, classification of image areas, etc. ...

4 CALCULATION

• current calculation of image parameters, e.g. number of green pixel,
diameter of the plant, etc. ...

5 OUTPUT

• export of the calculated data into *.csv result file, etc. ...

Figure A.1: Modules of HTPheno

17

Appendix B

Details: The current

workflow in HTP.java

B.1 Obtaining the image

An image is obtained via the HTPinput.getNextImage() function.

B.2 Loading the configuration files

Depending on the image attribute (e.g. side view image or top view image)

the configuration files are loaded.

There are five different files that contain configuration information for the

image classification process:

• region definitions which specify image areas and a list of allowed

classes

• colour to class definitions which declare the colour ranges (mini-

mum and maximum in RGB and HSV) for each class

• class to number definition for the internal representation of each

class as an integer number

• number to colour definitions defining the colour that each class

will have in the classification image

• scaling definitions which allow to convert the measured pixel into

millimetre.

18

B.3 Colour range classification

For each defined region HTPheno conducts the classification based on the

colour range. A pixel is classified as belonging to class c if its colour values

in RGB and HSV fall within the range of the given values for class c. Classes

are processed in the order given in the regions configuration files.

B.4 Single pixel removal

As next step HTPheno removes isolated pixel that do not have at least

2 pixel of the same class within their neighbourhood of 8 pixel. This step

lowers the noise level.

B.5 Remove non connected clusters of green pixel

As the plant itself can be considered connected, all clusters of green pixel

that are not within a certain radius near other plant parts, are discarded as

incorrect segmented.

B.6 Fill single pixel holes

For each still unclassified pixel we examine the pixel in a circle of radius 1

and 2 around that pixel. If only pixel of the same class lie on one of that

circles, we also assign that class to our previously unclassified pixel.

B.7 Apply region fill

All contiguous sets of unclassified pixel that are surrounded only by pixel of

one class are also considered to be pixel of that class.

B.8 Classify according to colour similarity

For an unclassified pixel all neighbouring classified pixel, and their classes,

are noted acquired.

1. calculate the euclidean RGB and HSV distance to each of the neigh-

bouring classes and determine the ”nearest“ class amongst these,

19

2. determine the most frequent class around that pixel,

3. decision: if the nearest and the most frequent class is of type plant

then class plant is assigned; else the class with the closest match in

colour values is assigned.

B.9 Apply region fill again

All contiguous sets of unclassified pixel that are surrounded only by pixel of

one class are also considered to be pixel of that class.

B.10 Conduct image property calculations

Here HTPheno determines several image parameters like the width and

height of the plant and the plant area and stores those values in the ImageJ

results table for later display.

B.11 Create the final image stack

Finally HTPheno creates the image stack that contains all images of the

processing steps as well as the final image with contour, plant bounding box,

scale and diameter, if applicable.

20

